приложение 3

Аннотации дисциплин

Оглавление

История (история России, всеобщая история)	2
Иностранный язык	
Проектная деятельность	
Деловая коммуникация	
Культурология	
Правоведение	
Философия	
Математика	9
Информатика	10
Инженерная графика	
Химия	
Физика (общая)	13
Материаловедение и технология материалов и конструкций	
Электротехника и электроника	
Информационные системы и безопасность	
Математические методы моделирования физических процессов	
Экономика	
Физическая культура и спорт	19
Механика	
Прикладная физика	21
Безопасность жизнедеятельности	22
Термодинамика	23
Тепломассообмен	
Механика жидкости и газа	25
Экспериментальные методы исследования	26
Квантовая механика	
Статистическая физика	28
Теория теплопроводности	
Экспериментальное исследование свойств веществ	
Теория теплофизических свойств веществ	
Численное решение задач теплофизики	
Экспериментальное исследование тепломассообмена	
Основы энергетики	34
Теплообмен излучением	
Новые информационно-измерительные системы и технологии в теплофизике	36
Социология	
Политология	38
Мировые цивилизации и мировые культуры	39
Элективные дисииплины о физической культуре и спорту	40

История (история России, всеобщая история)

Трудоемкость в зачетных единицах:	2	1 семестр
Часов (всего) по учебному плану:	72 ч	1 семестр
Лекции	16 ч	1 семестр
Практические занятия	16 ч	1 семестр
Лабораторные работы	0 ч	1 семестр
Самостоятельная работа	22 ч	1 семестр
Курсовые проекты (работы)	0 ч	1 семестр
Экзамены/зачеты	18 ч	1 семестр

<u>Цель дисциплины:</u> изучение закономерностей и особенностей исторического прошлого человечества (всеобщая история) на основе систематизированных знаний об истории России (история России), ее места и роли в мировом историческом процессе

Основные разделы дисциплины

История как наука: ее предмет, сущность, социальные функции. Исторические классификация. Методология источники, исторической науки: научность, объективность, историзм. Развитие исторических знаний в мировой истории. Традиции отечественной историографии изучения истории России. Предыстория человечества. Человечество в эпоху Древнего мира и Средневековья. Особенности создания и развития Древнерусского государства: взаимоотношения с Западной Европой, Византией, Золотой Ордой (IX-первая половина XV вв.). Государственная централизация в европейской истории и «московская модель» централизации. Московское государство второй половины XV-XVII веках: между Европой и Азией. Российская империя и мир в Новое время . Российская империя XVIII в. и европейские ориентиры. Российская империя XIX в.: проблемы модернизации и сохранение национальной идентичности. Мир и Российская империя в конце XIX – начале XX вв: поиск путей политических и экономических преобразований и попытки сохранения традиционных институтов власти как вектор развития российского общества. Основные тенденции и противоречия мирового развития в ХХ веке: мировые войны и их последствия. Советский этап отечественной истории и Россия на постсоветском пространстве (1917 -начало XXI в.). Мировое сообщество в первые десятилетия XXI века. Глобализация мирового экономического, политического и культурного пространства. Современные вызовы человечеству и роль России в их решении.

Иностранный язык

Трудоемкость в зачетных единицах:	4	1,2 семестры
Часов (всего) по учебному плану:	144 ч	1,2 семестры
Лекции	0 ч	1,2 семестры
Практические занятия	32 + 32 ч	1,2 семестры
Лабораторные работы	0 ч	1,2 семестры
Самостоятельная работа	22 + 22 ч	1,2 семестры
Курсовые проекты (работы)	0 ч	1,2 семестры
Экзамены/зачеты	18+18 ч	1,2 семестры

<u>Цель дисциплины:</u> изучение грамматического строя иностранного языка и лексики деловой и общетехнической направленности; формирование у обучающихся способности вести деловую коммуникацию на иностранном языке.

Основные разделы дисциплины

- 1. Фонетика (корректирующий курс правила и техника чтения);
- 2. Лексика 2000-2200 единиц (из них 1000 продуктивно) общетехнической направленности;
- 3. Грамматика:

Причастие: формы и функции. Обстоятельный (зависимый) причастный оборот. Независимый причастный оборот в начале предложения и в конце предложения. Герундий: формы и функции. Сложный герундиальный оборот. Сложный герундиальный оборот в функции подлежащего. Инфинитив: формы и функции. Субъектный и объектный инфинитивные обороты. Придаточные предложения, глагольные формы, оканчивающиеся на –ed, стоящие подряд. Условные придаточные предложения 1, 2. 3 типов и с инверсией. Местоимения в неопределенно-личных предложениях. Местоимение it. Неполные обстоятельственные предложения времени и условия. Бессоюзное подчинение придаточных определительных предложений. Страдательный (пассивный) залог и его особенности.

- 4. Чтение текстов общетехнического содержания (1500-2000 п. зн.);
- 5. Устная речь и аудирование (формирование навыков монологического высказывания на темы общекультурного характера): About Myself, Native Town, Russia, My Institute and my future profession, Great Britain, The USA.
- 6. Письмо (формирование навыков реферирования текстов общетехнического содержания).

Проектная деятельность

Трудоемкость в зачетных единицах:	2	2 семестр
Часов (всего) по учебному плану:	72 ч	2 семестр
Лекции	16 ч	2 семестр
Практические занятия	16 ч	2 семестр
Лабораторные работы	0 ч	2 семестр
Самостоятельная работа	40 ч	2 семестр
Курсовые проекты (работы)	0 ч	2 семестр
Экзамены/зачеты	0 ч	2 семестр

<u>Цель дисциплины:</u> формирование у обучающихся способности управлять своим временем, выстраивать траекторию саморазвития, определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из имеющихся ресурсов и ограничений.

Основные разделы дисциплины

Управление личным временем, тайм-менеджмент. Понятие тайм-менеджмента. Приоритетные задачи управления личным временем. Учет времени, баланс времени, экономия времени. Планирование времени.

Основы проектной деятельности. Введение в проектную деятельность. Обеспечение проектной деятельности. Организация проектной деятельности для решения профессиональных задач. Подготовка к защите проекта.

Деловая коммуникация

Трудоемкость в зачетных единицах:	3	3 семестр
Часов (всего) по учебному плану:	108 ч	3 семестр
Лекции	16 ч	3 семестр
Практические занятия	32 ч	3 семестр
Лабораторные работы	0 ч	3 семестр
Самостоятельная работа	60 ч	3 семестр
Курсовые проекты (работы)	0 ч	3 семестр
Экзамены/зачеты	0 ч	3 семестр

<u> Цель дисциплины:</u> выработка у обучающихся умения вести обмен деловой информацией в устной и письменной формах на государственном языке.

Основные разделы дисциплины

Основы деловой коммуникации. Речевая коммуникация: понятие, формы и типы. Невербальные аспекты делового общения. Деловые беседы и деловые совещания в структуре современного делового взаимодействия. Технология подготовки и проведения деловых переговоров и деловых совещаний. Деловой телефонный разговор. Письменная форма коммуникации: деловая переписка.

Основы конфликтологии. Личность как объект психологического изучения. Общее и индивидуальное в психике человека: темперамент, способности, направленность. Характер личности. Типологические модели характеров. Эмоционально-волевая регуляция поведения: эмоции и чувства. Психические состояния. Познавательные психические процессы. Психология общения и межличностных отношений. Деловое общение. Основные правила эффективного делового общения. Социально-психологическая организация социальных групп. Конфликты в межличностном общении и пути их разрешения.

Культурология

Трудоемкость в зачетных единицах:	2	4 семестр
Часов (всего) по учебному плану:	72 ч	4 семестр
Лекции	16 ч	4 семестр
Практические занятия	16 ч	4 семестр
Лабораторные работы	0 ч	4 семестр
Самостоятельная работа	22 ч	4 семестр
Курсовые проекты (работы)	0 ч	4 семестр
Экзамены/зачеты	18 ч	4 семестр

<u> Цель дисциплины:</u> изучение основных принципов функционирования и закономерностей развития культуры как целостной системы.

Основные разделы дисциплины

Предмет и структура культурологического знания. Культурология как наука. Возникновение, развитие, основные проблемы культурологии. Понятие культуры в системе базовых категорий современной гуманитаристики. Культура – общество – личность. Инкультурация и социализация. Культурная идентичность. Культура как система ценностей, идеалов и норм. Структура культуры. Функции, формы и виды культуры. Язык и бытие культуры. Семиотика культуры: основные принципы и разделы. Знак и символ в системе культуры. Миф в структуре языка культуры. Архетипы и их роль в мировой культуре. Динамика культуры: процессы культурных изменений, их обусловленность и направленность. Культурно-исторические эпохи. Закономерности развития культуры. Типология культуры. Принципы типологизации культуры и основные типологические модели в культурологии. Полифония мировой культуры. Мировая культура и культурные миры: единство и многообразие. Мировые религии: общее и особенное. Религиозноконфессиональные типы культуры. Буддистский тип культуры. Христианский тип культуры. Мусульманский тип культуры. Запад и Восток как социокультурные парадигмы и культурные миры. Региональные культуры. Россия в диалоге культур. Процессы дифференциации и интеграции в культуре. Взаимодействие культур. Партикуляризм и универсализм в философии культуры. Аккультурация: виды, типы и формы. Культурные различия и проблема толерантности. Трансформации культурной идентичности в эпоху постмодерна. Глобализация или мультикультурализм: новые вызовы и современная мировая культура. Проблема диалога культур.

Правоведение

Трудоемкость в зачетных единицах:	2	5 семестр
Часов (всего) по учебному плану:	72 ч	5 семестр
Лекции	16 ч	5 семестр
Практические занятия	16 ч	5 семестр
Лабораторные работы	0 ч	5 семестр
Самостоятельная работа	40 ч	5 семестр
Курсовые проекты (работы)	0 ч	5 семестр
Экзамены/зачеты	0 ч	5 семестр

<u>Цель дисциплины:</u> формирование правовой культуры, формирование способности выбирать оптимальные способы решения задач, исходя из действующих правовых норм.

Основные разделы дисциплины

Основные понятия о праве. Правовое государство и его основные характеристики. Правосознание, правовая культура и правовое воспитание. Правомерное поведение, правонарушение, юридическая ответственность. Законность, правопорядок, дисциплина. Правовые отношения. Права на результаты интеллектуальной деятельности и средства индивидуализации. Основы информационного права.

Философия

Трудоемкость в зачетных единицах:	2	6 семестр
Часов (всего) по учебному плану:	72 ч	6 семестр
Лекции	14 ч	6 семестр
Практические занятия	14 ч	6 семестр
Лабораторные работы	0 ч	6 семестр
Самостоятельная работа	44 ч	6 семестр
Курсовые проекты (работы)	0 ч	6 семестр
Экзамены/зачеты	0 ч	6 семестр

<u>Цель дисциплины:</u> выработка философского мировоззрения, способности к методологическому анализу социокультурных и научных проблем; формирование способности осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач, способности интерпретировать проблемы современности с позиций этики и философских знаний.

Основные разделы дисциплины

Предмет философии. Становление философии. Философия средних веков. Философия Нового времени. Классическая немецкая философия. Иррационализм в философии. Марксистская философия и современность. Отечественная философия. Основные направления и школы современной философии. Учение о бытии. Сознание и познание. Научное и ненаучное знание. Человек, общество, культура. Смысл человеческого бытия. Будущее человечества.

Математика

Трудоемкость в зачетных единицах:	28	1,2,3,4 семестры
Часов (всего) по учебному плану:	1008 ч	1,2,3,4 семестры
Лекции	64+64+64+32 ч	1,2,3,4 семестры
Практические занятия	80+80+64+32 ч	1,2,3,4 семестры
Лабораторные работы	0 ч	1,2,3,4 семестры
Самостоятельная работа	72+108+124+80 ч	1,2,3,4 семестры
Курсовые проекты (работы)	0 ч	1,2,3,4 семестры
Экзамены/зачеты	36+36+36+36 ч	1,2,3,4 семестры

Основные разделы дисциплины

Аналитическая геометрия линейная алгебра; И последовательности ряды; дифференциальное и интегральное исчисления; векторный анализ и элементы теории поля; гармонический анализ; дифференциальные уравнения; численные методы; основы вычислительного эксперимента; функции комплексного переменного; функционального анализа; вероятность и статистика: теория вероятностей, случайные процессы, статистическое оценивание и проверка гипотез, статистические методы обработки экспериментальных данных; вариационное исчисление и оптимальное управление; уравнения математической физики; дискретная математика: логические исчисления, графы, теория алгоритмов, языки и грамматики

Информатика

Трудоемкость в зачетных единицах:	9	1, 2 семестры
Часов (всего) по учебному плану:	324 ч	1, 2 семестры
Лекции	32+32 ч	1, 2 семестры
Практические занятия	16+16 ч	1, 2 семестры
Лабораторные работы	16+16 ч	1, 2 семестры
Самостоятельная работа	80 +44 ч	1, 2 семестры
Курсовые проекты (работы)	0 ч	1, 2 семестры
Экзамены/зачеты	36+36 ч	1, 2 семестры

<u> Цель дисциплины:</u> изучение теории и практики использования современных информационных технологи для решения учебных, инженерных и научно-технических задач

Основные разделы дисциплины

Современные компьютерные программы для изучения математики и решения задач по математике в школе и вузе. Современные компьютерные программы для изучения математики и решения задач по математике в вузе. Основные "математические" возможности пакета Mathcad.. Типы инструментов решения задач: аналитические, графические и численные. Методика решения в среде Mathcad алгебраических уравнений и систем. Решение задач курса математики в среде Mathcad (матрицы и графический анализ функций). Графическое отображение функций двух переменных в среде Mathcad. Объемная графика Mathcad. Встроенные переменные Mathcad. Анимация с Mathcad. Оптимизация функции одной переменной в среде Mathcad. Оптимизация функции многих переменных в среде Mathcad. Решение задачи линейного программирования в среде Mathcad (оптимизация с ограничениями). Программирование в среде Mathcad: структура данных и конструкции алгоритмические управляющие алгоритмов. Конструкция Выбор. Программирование пользовательского сообщения об ошибке. Программирование в среде Mathcad: структура данных и алгоритмические управляющие конструкции алгоритмов. Конструкция цикл с параметром и цикл с предпроверкой. Локальная переменная программы. Создание программными средствами рекурсивных функций в среде Mathcad. Работа с шаблонами. Методика решения в среде Mathcad системы дифференциальных уравнений (задача Коши). Решение в среде Mathcad систем обыкновенных дифференциальных уравнений (краевая задача).

Инженерная графика

Трудоемкость в зачетных единицах:	6	1,2 семестры
Часов (всего) по учебному плану:	216 ч	1,2 семестры
Лекции	16+0 ч	1,2 семестры
Практические занятия	48+48 ч	1,2 семестры
Лабораторные работы	0 ч	1,2 семестры
Самостоятельная работа	44+60 ч	1,2 семестры
Курсовые проекты (работы)	0 ч	1,2 семестры
Экзамены/зачеты	0+0 ч	1,2 семестры

<u>Цель дисциплины</u>: изучение способов геометрического и графического моделирования инженерных задач; выработка знаний, умений и навыков, необходимых студентам для решения на этих моделях метрических и позиционных задач, встречающихся в инженерной практике; выполнение и чтение технических чертежей, оформление конструкторской и технической документации в области теплоэнергетики и теплотехники

Основные разделы дисциплины

Конструкторская документация; оформление чертежей; изображения, надписи, обозначения; изображения и обозначения элементов деталей; изображение и обозначение резьбы; рабочие чертежи деталей; выполнение эскизов деталей машин; изображения сборочных единиц; сборочный чертеж изделий; геометрическое моделирование и решаемые ими задачи, графические объекты, примитивы и их атрибуты, представление видеоинформации и ее машинная генерация, графические языки, пространственная графика, современные стандарты компьютерной графики, графические диалоговые системы, применение интерактивных графических систем.

Химия

Трудоемкость в зачетных единицах:	6	1 семестр
Часов (всего) по учебному плану:	216 ч	1 семестр
Лекции	32 ч	1 семестр
Практические занятия	32 ч	1 семестр
Лабораторные работы	32 ч	1 семестр
Самостоятельная работа	84 ч	1 семестр
Курсовые проекты (работы)	0 ч	1 семестр
Экзамены/зачеты	36 ч	1 семестр

<u>Цель дисциплины:</u> изучение общих законов и принципов химии для последующего их использования при освоении межпредметных дисциплин и спецкурсов и для принятия обоснованных решений в профессиональной деятельности.

Основные разделы дисциплины

Основы строения вещества: Электронное строение атома и систематика химических элементов. Химическая связь. Типы взаимодействия молекул.

Взаимодействия веществ: Элементы химической термодинамики. Химическое и фазовое равновесия. Химическая кинетика. Химические системы. Электрохимические процессы. Коррозия и защита металлов и сплавов.

Физика (общая)

Трудоемкость в зачетных единицах:	16	2,3,4 семестры
Часов (всего) по учебному плану:	576 ч	2,3,4 семестры
Лекции	48+48+48 ч	2,3,4 семестры
Практические занятия	32+32+32 ч	2,3,4 семестры
Лабораторные работы	32+32+32 ч	2,3,4 семестры
Самостоятельная работа	104+104+104 ч	2,3,4 семестры
Курсовые проекты (работы)	0 ч	2,3,4 семестры
Экзамены/зачеты	36+36+36 ч	2,3,4 семестры

<u>Цель дисциплины:</u> обеспечение фундаментальной физической подготовки, позволяющей будущим специалистам ориентироваться в научно-технической информации, использовать физические принципы и законы, а также результаты физических открытий в тех областях техники, в которых они будут трудиться

Основные разделы дисциплины

Физические основы механики: понятие состояния в классической механике, уравнения движения, законы сохранения, основы релятивистской механики, принцип относительности в механике, кинематика и динамика твердого тела, жидкостей и газов.

Электричество и магнетизм: электростатика и магнетостатика в вакууме и веществе, уравнения Максвелла в интегральной и дифференциальной формах, материальные уравнения, квазистационарные токи, принцип относительности в электродинамике.

Физика колебаний и волн: гармонический и ангармонический осциллятор, физический смысл спектрального разложения, кинематика волновых процессов, нормальные моды, интерференция и дифракция волн, элементы Фурье-оптики.

Квантовая физика: корпускулярно-волновой дуализм, принцип неопределенности, квантовые состояния, принцип суперпозиции, квантовые уравнения движения, операторы физических величин, энергетический спектр атомов и молекул, природа химической связи.

Материаловедение и технология материалов и конструкций

Трудоемкость в зачетных единицах:	4	2 семестр
Часов (всего) по учебному плану:	144 ч	2 семестр
Лекции	32 ч	2 семестр
Практические занятия	0 ч	2 семестр
Лабораторные работы	32 ч	2 семестр
Самостоятельная работа	62 ч	2 семестр
Курсовые проекты (работы)	0 ч	2 семестр
Экзамены/зачеты	18 ч	2 семестр

<u>Цель дисциплины:</u> изучение строения конструкционных материалов, а также его влияния на механические, технологические и эксплуатационные свойства для дальнейшего применения этих знаний при проектировании и использовании теплотехники в профессиональной деятельности

Основные разделы дисциплины

Номенклатура технических материалов в теплоэнергетике, их структура и основные свойства; атомно-кристаллическое строение металлов; фазово-структурный состав сплавов; типовые диаграммы состояния; железо и сплавы на его основе; деформация, термическая обработка металлических материалов; новые металлические материалы; неметаллические материалы; композиционные и керамические материалы

Методы получения материалов, металлургические способы производства материалов. Получение заготовок и деталей литьем и обработкой давлением. Основы технологии прокатки, свободной ковки, объемной и листовой штамповки, прессования. Физические основы сварочного процесса, виды сварки металлов. Расчет параметров режима сварки. Виды контроля и дефектоскопии сварных швов и соединений. Общие сведения о технологии процесса резания. Токарная обработка металлов, обработка отверстий сверлением, зенкерованием и развертыванием; фрезерование.

Электротехника и электроника

Трудоемкость в зачетных единицах:	9	4,5 семестры
Часов (всего) по учебному плану:	324 ч	4,5 семестры
Лекции	32+32 ч	4,5 семестры
Практические занятия	16+0 ч	4,5 семестры
Лабораторные работы	16+32 ч	4,5 семестры
Самостоятельная работа	62+80 ч	4,5 семестры
Курсовые проекты (работы)	0 ч	4,5 семестры
Экзамены/зачеты	18+36 ч	4,5 семестры

<u>Цель дисциплины:</u> освоение методов анализа и расчета электрических и магнитных цепей, электронных устройств, ознакомление с принципами действия электрических машин и простейших электронных устройств. Дисциплина опирается на школьные знания, а также дисциплины «физика», «математический анализ», «линейная алгебра и аналитическая геометрия»; дисциплина является базовой для последующего изучения автоматизированных систем управления, технических средств автоматизации

Основные разделы дисциплины

Электрические цепи постоянного тока; электрические цепи переменного тока; трехпроводные и четырехпроводные трехфазные цепи; переходные процессы в электрических цепях; линейные и нелинейные цепи; магнитные цепи; электрические машины постоянного тока; асинхронные машины; синхронные машины; основы электропривода и электроснабжения; основы электроники и импульсных устройств.

Информационные системы и безопасность

Трудоемкость в зачетных единицах:	2	5 семестр
Часов (всего) по учебному плану:	72 ч	5 семестр
Лекции	16 ч	5 семестр
Практические занятия	16 ч	5 семестр
Лабораторные работы	0 ч	5 семестр
Самостоятельная работа	22 ч	5 семестр
Курсовые проекты (работы)	0 ч	5 семестр
Экзамены/зачеты	18 ч	5 семестр

<u>Цель дисциплины:</u> изучение структуры, теоретических и технических основ и принципов функционирования энергетических систем и технологических процессов с использованием нетрадиционных и возобновляемых источников энергии.

Основные разделы дисциплины

Традиционные и нетрадиционные источники энергии. Запасы ресурсы источников энергии; динамика потребления энергоресурсов и развитие энергетического хозяйства, место нетрадиционных источников в удовлетворении энергетических потребностей человека

Использование энергии Солнца. Физические основы процессов преобразования солнечной энергии; типы коллекторов; принципы их действия и методы расчетов; солнечные коллекторы с концентраторами; аккумулирование тепла; типы аккумуляторов и методы их расчета; солнечные электростанции.

Ветроэнергетические установки; запасы энергии ветра и возможности ее использования; ветровой кадастр России; типы ветроэнергетических установок; ветроэлектростанции.

Геотермальная энергия.; тепловой режим земной коры, источники геотермального тепла; методы и способы использования геотермального тепла для выработки электроэнергии и в системах теплоснабжения; экологические показатели ГеоТЭС..

Использование энергии океана; энергетические ресурсы океана; энергетические установки по использованию энергии океана (использование разности температуры воды, волн, приливов, течений);

Понятие вторичных энергоресурсов (ВЭР); использование вторичных энергоресурсов для получения электрической и тепловой энергии; способы использования и преобразования ВЭР; отходы производства и сельскохозяйственные отходы; способы и возможности их использования в качестве первичных источников для получения электрической и тепловой энергии.

Математические методы моделирования физических процессов

Трудоемкость в зачетных единицах:	9	3,4 семестры
Часов (всего) по учебному плану:	324 ч	3,4 семестры
Лекции	32+32 ч	3,4 семестры
Практические занятия	16+16 ч	3,4 семестры
Лабораторные работы	16+16 ч	3,4 семестры
Самостоятельная работа	80+44 ч	3,4 семестры
Курсовые проекты (работы)	0 ч	3,4 семестры
Экзамены/зачеты	36+36 ч	3,4 семестры

Основные разделы дисциплины

Введение в теорию погрешностей. Абсолютная и относительная погрешности. Понятие верной цифры. Погрешности арифметических операций. Погрешность функции одной и многих переменных Численные методы решения скалярных уравнений. Постановка задачи поиска корня нелинейного уравнения. Локализация корней. Метод Ньютона. Теорема сходимости. Численные методы решения систем линейных и нелинейных уравнений. Постановка задачи решения линейной системы алгебраических уравнений (СЛАУ). Прямые и итерационные методы решения. Метод Гаусса и его модификации с выбором главного элемента. Метод Гаусса. Метод прогонки. Метод Холецкого. Метод простой итерации, метод Зейделя, метод релаксации. Приближение функций. Среднеквадратичное уклонение. Постановка задачи глобальной полиномиальной Метод наименьших квадратов. интерполяции. Численное интегрирование и дифференцирование. Постановка задачи интегрирования. Постановка задачи численного численного дифференцирования. Численное методы решения задачи Коши. Постановка задачи Коши и ее геометрический смысл. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений: метод разложения в ряд Тейлора, метод Эйлера, методы Рунге-Кутты. Разностные методы решения краевой задачи. Построение разностной схемы. Разрешимость. Использование метода прогонки. Оценка погрешности сеточного решения. решения уравнений в частных производных. Построение разностной схемы. Разрешимость. Использование метода прогонки. Оценка погрешности сеточного решения.

Экономика

Трудоемкость в зачетных единицах:	3	5 семестр
Часов (всего) по учебному плану:	108 ч	5 семестр
Лекции	16 ч	5 семестр
Практические занятия	16 ч	5 семестр
Лабораторные работы	0 ч	5 семестр
Самостоятельная работа	58 ч	5 семестр
Курсовые проекты (работы)	0 ч	5 семестр
Экзамены/зачеты	18 ч	5 семестр

<u>Цель дисциплины:</u> изучение теоретических основ науки экономика, в т.ч. возможностей эффективного использования производственных ресурсов в условиях современной рыночной экономики

Основные разделы дисциплины

Экономические потребности и экономические блага. Экономические ресурсы, их характеристика. Экономический рост. Современные экономические системы. Методы экономической науки и уровни экономического анализа. Понятие товара. Классификация предельной товаров. Закон убывающей полезности товара. Основы потребительского выбора. Бюджетное ограничение. Понятие «спрос». Закон спроса. Понятие «предложение». Функция предложения. Эластичность спроса и предложения. Понятие рынка и условие его существования. Конкуренция и ее виды. Естественные монополии. Предмет макроэкономики. Основное макроэкономическое тождество. Экономические функции правительства. Теория макроэкономического равновесия. Безработица и ее виды. Инфляция и ее виды инфляции. Содержание и общие черты экономического цикла. Фазы цикла. Динамика экономических Продолжительность экономических циклов. Государственные расходы и налоги. Функции налогов. Принципы налогообложения. Понятие и типы денежных систем. Банковская система и ее уровни. Центральный банк и его функции. Монетарная политика государства.

Физическая культура и спорт

Трудоемкость в зачетных единицах:	2	1,2 семестры
Часов (всего) по учебному плану:	72 ч	1,2 семестры
Лекции	0 ч	1,2 семестры
Практические занятия	16 + 16 ч	1,2 семестры
Лабораторные работы	0 ч	1,2 семестры
Самостоятельная работа	20 + 20 ч	1,2 семестры
Курсовые проекты (работы)	0 ч	1,2 семестры
Экзамены/зачеты	0+0 ч	1,2 семестры

<u>Цель дисциплины:</u> гармоничное развитие человека, формирование физически и духовно крепкого, социально-активного, высоконравственного поколения студенческой молодежи, гармоничное сочетание физического и духовного воспитания, укрепление здоровья студентов, внедрение здорового образа жизни — не только как основы, но и как нормы жизни у будущих высококвалифицированных специалистов-энергетиков, формирование активной гражданской позиции.

Основные разделы дисциплины

Теоретический раздел дисциплины

Физическая культура в общекультурной и профессиональной подготовке студентов МЭИ. Образ жизни и его отражение в профессиональной деятельности.

Практический раздел дисциплины

Система практических умений и навыков, обеспечивающих сохранение и укрепление здоровья, психическое благополучие, развитие и совершенствование психофизических способностей, качеств и свойств личности, самоопределение в физической культуре.

Общая и профессионально-прикладная физическая подготовленность, определяющая психофизическую готовность студента к будущей профессии.

Механика

Трудоемкость в зачетных единицах:	5	6 семестр
Часов (всего) по учебному плану:	180 ч	6 семестр
Лекции	28 ч	6 семестр
Практические занятия	28 ч	6 семестр
Лабораторные работы	0 ч	6 семестр
Самостоятельная работа	88 ч	6 семестр
Курсовые проекты (работы)	0 ч	6 семестр
Экзамены/зачеты	18 ч	6 семестр

<u> Цель дисциплины:</u> изучение фундаментальных основ механики равновесия и движения твердого тела и систем тел и точек

Основные разделы дисциплины

<u>Статика.</u> Приведение системы сил к простейшему виду. Условия равновесия абсолютно твёрдого тела и системы тел. Центр тяжести. Трение скольжения и трение качения.

<u>Кинематика.</u> Кинематика точки. Кинематика твёрдого тела (поступательное, вращательное, плоскопараллельное, сферическое, произвольное движения). Сложное движение точки и твёрдого тела.

<u>Динамика.</u> Динамика точки в инерциальной и неинерциальной системах отсчёта. Уравнения движения системы материальных точек. Общие теоремы динамики механических систем. Динамика твёрдого тела (поступательное, вращательное, плоскопараллельное, сферическое, произвольное движения). Принцип Даламбера. Элементы теории гироскопов. Теория удара.

<u>Аналитическая механика.</u> Принцип возможных перемещений. Общее уравнение динамики. Уравнения Лагранжа второго рода в обобщённых координатах. Вариационные принципы механики.

Прикладная физика

Трудоемкость в зачетных единицах:	9	3,4 семестры
Часов (всего) по учебному плану:	324 ч	3,4 семестры
Лекции	32+32 ч	3,4 семестры
Практические занятия	32+16 ч	3,4 семестры
Лабораторные работы	0 ч	3,4 семестры
Самостоятельная работа	44+76 ч	3,4 семестры
Курсовые проекты (работы)	0 ч	3,4 семестры
Экзамены/зачеты	36+36 ч	3,4 семестры

<u>Цель дисциплины:</u> формирование у студентов инженерных подходов к решению комплексных задач проектирования оптимальных конструкций теплоэнергетического и теплотехнического оборудования

Основные разделы дисциплины

Требования к конструкциям узлов теплотехнологического оборудования; методика конструирования; прочно-плотные резьбовые соединения; определение нагрузочной способности; опоры; трение скольжения и качения; динамическая и статическая грузоподъемности; долговечность конструкции; механические передачи; конструирование валов, муфт, втулок; системы автоматизированного проектирования оборудования; реальная конструкция и ее расчетная схема, основные гипотезы механики материалов и конструкций, изгиб, кручение, теория напряженного состояния, прочность материалов при сложном напряженном состоянии, собственные колебания механических систем.

Безопасность жизнедеятельности

Трудоемкость в зачетных единицах:	4	7 семестр
Часов (всего) по учебному плану:	144 ч	7 семестр
Лекции	48 ч	7 семестр
Практические занятия	16 ч	7 семестр
Лабораторные работы	16 ч	7 семестр
Самостоятельная работа	46 ч	7 семестр
Курсовые проекты (работы)	0 ч	7 семестр
Экзамены/зачеты	18 ч	7 семестр

<u>Цель дисциплины:</u> формирование культуры профессиональной безопасности, при которой вопросы снижения риска возникновения опасных ситуаций являются приоритетными.

Основные разделы дисциплины

Человек и среда обитания; характерные состояния системы «человек - среда обитания»; основы физиологии труда и комфортные условия жизнедеятельности в техносфере; критерии комфортности; негативные факторы техносферы, их воздействие на человека, техносферу и природную среду; критерии безопасности; опасности технических систем: отказ, вероятность отказа, качественный и количественный анализ опасностей; средства снижения травмоопасности и вредного воздействия технических систем; безопасность функционирования автоматизированных и роботизированных производства; безопасность в чрезвычайных ситуациях; управление безопасностью жизнедеятельности; правовые и нормативно-технические основы управления; системы контроля требований безопасности и экологичности; профессиональный отбор операторов технических систем; экономические последствия и материальные затраты на обеспечение безопасности жизнедеятельности; международное сотрудничество в области безопасности жизнедеятельности.

Термодинамика

Трудоемкость в зачетных единицах:	10	5,6 семестр
Часов (всего) по учебному плану:	360	5,6 семестр
Лекции	60ч	5,6 семестр
Практические занятия	62 ч	5,6 семестр
Лабораторные работы	14ч	6 семестр
Самостоятельная работа	152 ч	5,6 семестр
Курсовые проекты (работы)	нет	5,6 семестр
Экзамены/зачеты	72 ч	5,6 семестр

<u>Цель дисциплины:</u> Изучение терминологии, понятий, законов и методов термодинамики для расчета термодинамических свойств веществ и анализа термодинамических процессов и циклов, а также изучение законов превращения энергии в виде передачи теплоты и совершения работы; основных процессов превращения тепла в работу; компоновки современных ТЭС и ТЭЦ и назначение их основных составляющих, овладение методами расчета их термических КПД.

Основные разделы дисциплины:

Введение. Основные понятия. Параметры состояния термодинамической системы. Первый и второй законы термодинамики. Преобразование теплоты в работу. Термодинамические процессы и циклы. Термодинамические свойства газов. Термодинамические свойства смесей газов. Фазовое равновесие в чистом веществе. Термодинамические свойства реальных веществ. Термодинамические свойства химически реагирующих газов.

Термодинамические соотношения для потока рабочего тела; Течение газа в соплах и диффузорах. Сопло Лаваля; Торможение сверхзвукового потока. Скачок уплотнения; Сжатие газа поршневым компрессором; Анализ эффективности термодинамических циклов тепловых установок; Циклы двигателей внутреннего сгорания; Циклы газотурбинных установок; Циклы паротурбинных установок; Методы повышения эффективности теплосиловых установок.

Тепломассообмен

Трудоемкость в зачетных единицах:	10	7,8 семестр
Часов (всего) по учебному плану:	360 ч	7,8 семестр
Лекции	106 ч	7,8 семестр
Практические занятия	60ч	7,8 семестр
Лабораторные работы	нет	7,8 семестр
Самостоятельная работа	122 ч	7,8 семестр
Курсовые проекты (работы)	нет	7,8 семестр
Экзамены/зачеты	72 ч	7,8 семестр

<u>Цель дисциплины</u>:изучение механизмов основных видов конвективного однофазного и многофазного теплообмена, в том числе – при фазовых переходах; практическое освоение современных методов расчета этих процессов.

Основные разделы дисциплины:

Содержание и классификация задач конвективного теплообмена. Коэффициент теплоотдачи, число Нуссельта. Общая форма уравнений сохранения при эйлеровом методе описания. Уравнение сохранения массы (неразрывности). Уравнение сохранения импульса; тензоры плотности потока импульса, давлений и вязких напряжений; различные формы дифференциального уравнения сохранения импульса. Уравнение сохранения энергии в движущейся среде. Подобие физических явлений. Теоремы теории подобия. Подобие и аналогия. Теория подобия как научная основа экспериментальных исследований. Система уравнений температурного (теплового) пограничного слоя. Анализ теплообмена при ламинарном течении в погранслое. Переход к турбулентному режиму течения в пограничном слое и в каналах: основные результаты теоретического анализа устойчивости, факторы, влияющие на переход к турбулентному течению. Осредненные уравнения движения и энергии для турбулентного течения. Структура пристенной турбулентной области. Механизм турбулентного переноса импульса и методы его моделирования. Аналогия Рейнольдса для теплообмена при турбулентном течении в пограничном слое. Ее модернизированный вариант (двухслойная схема), расчетные соотношения теплоотдачи. Механизм и математическое описание свободной конвекции, приближение Буссинеска, максимальная скорость свободной конвекции. Свободноконвективный пограничный слой на вертикальной плоскости, расчет коэффициента теплоотдачи при ламинарном и турбулентном течении. Математическое описание теплообмена в круглых трубах. Тепловой баланс, среднемассовая скорость и температура. Стабилизированный теплообмен при граничных условиях 2-го рода; интеграл Лайона. Стабилизированный теплообмен при ламинарном течении. Стабилизированный теплообмен при турбулентном течении: результаты теоретического анализа для неметаллических жидкостей и жидких металлов, расчетные формулы.

Механика жидкости и газа

Трудоемкость в зачетных единицах:	8	5,6 семестр
Часов (всего) по учебному плану:	288	5,6 семестр
Лекции	60 ч	5,6 семестр
Практические занятия	32 ч	5,6 семестр
Лабораторные работы	14 ч	6 семестр
Самостоятельная работа	110 ч	5,6 семестр
Курсовые проекты (работы)	нет	5,6 семестр
Экзамены/зачеты	72 ч	5,6 семестр

<u>Цель дисциплины:</u>изучение основ механики жидкости и газа, а также использование полученных знаний для описания физических процессов в теплообменном энергетическом оборудовании.

Основные разделы дисциплины

- 1.Введение
- 2. Кинематика жидкости
- 3. Уравнения динамики жидкости
- 4.Гидростатика
- 5. Динамика идеальной жидкости
- 6.Плоское стационарное движение идеальной несжимаемой жидкости
- 7. Динамика вязкой жидкости
- 8. Ламинарные течения
- 9.Турбулентные течения

Экспериментальные методы исследования

Трудоемкость в зачетных единицах:	3	5 семестр
Часов (всего) по учебному плану:	108	5 семестр
Лекции	32 ч	5 семестр
Практические занятия	16 ч	5 семестр
Лабораторные работы	16 ч	5 семестр
Самостоятельная работа	26 ч	5 семестр
Курсовые проекты (работы)	нет	5 семестр
Экзамены/зачеты	18 ч	5 семестр

Основные разделы дисциплины

- 1. Введение
- 2. Методы измерения температуры
- 3. Методы создания и измерения высоких давлений
- 4. Методы создания и измерения вакуума
- 5. Методы измерения расхода
- 6. Методы измерения теплофизических свойств веществ

Квантовая механика

Трудоемкость в зачетных единицах:	5	5 семестр
Часов (всего) по учебному плану:	180ч	5 семестр
Лекции	48 ч	5 семестр
Практические занятия	32 ч	5 семестр
Лабораторные работы	64ч	5 семестр
Самостоятельная работа	64ч	5 семестр
Курсовые проекты (работы)	нет	5 семестр
Экзамены/зачеты	36 ч	5 семестр

<u>Цель дисциплины</u>:Изучение основ квантовой механики как базы для последующего освоения статистической физики, теории теплофизических свойств веществ, физики плазмы, физики твёрдого тела и применения полученных знаний в практике теплофизических исследований. Освоение основных идей и положений, лежащих в основе квантовой физики — таких, как принцип неопределённостей, корпускулярно-волновой дуализм и вероятностный характер поведения микросистем. Приобретение начальных навыков применения математического аппарата квантовой механики. Овладение методами решения простейших задач квантовой механики и подходами к анализу их результатов.

Основные разделы дисциплины:

Квантовая физика — революция в естествознании. Волновая функция и уравнение Шрёдингера. Операторы импульса, координаты и энергии микрочастицы. Статистические характеристики динамических переменных. Соотношения неопределённостей. Микрочастица в поле центральной силы. Стационарные состояния системы двух взаимодействующих микрочастиц.

Статистическая физика

Трудоемкость в зачетных единицах:	4	6 семестр
Часов (всего) по учебному плану:	144ч	6 семестр
Лекции	28ч	6 семестр
Практические занятия	28ч	6 семестр
Лабораторные работы	нет	6 семестр
Самостоятельная работа	52ч	6 семестр
Курсовые проекты (работы)	нет	6 семестр
Экзамены/зачеты	36 ч	6 семестр

<u>Цель дисциплины</u>:Изучение основных физических законов поведения систем многих частиц, находящихся в состоянии термодинамического равновесия, и основных методов вычисления термодинамических свойств веществ.

Основные разделы дисциплины:

Основы классической механики для систем многих частиц; элементы теории вероятностей; основные положения классической статистической механики; основы квантовой механики для систем тождественных частиц; основные положения квантовой статистической теории; квантовые идеальные газы частиц; идеальный газ частиц с внутренними степенями свободы в приближении Больцмана; основы статистической теории квазиклассического неидеального газа.

Теория теплопроводности

Трудоемкость в зачетных единицах:	4	6 семестр
Часов (всего) по учебному плану:	144 ч	6 семестр
Лекции	28 ч	6 семестр
Практические занятия	28 ч	6 семестр
Лабораторные работы	нет	6 семестр
Самостоятельная работа	52 ч	6 семестр
Курсовые проекты (работы)	нет	6 семестр
Экзамены/зачеты	36 ч	6 семестр

<u>Цель дисциплины:</u>Изучение теплопроводности тел как физического явления, а также математических методов решения задач теории теплопроводности.

Основные разделы дисциплины:

Основные положения теории тепломассообмена; уравнение теплопроводности; стационарные температурные поля в плоской, цилиндрической и сферической стенке; нестационарные температурные поля; численный метод решения задач теплопроводности; аналитические методы решения задач теплопроводности.

Экспериментальное исследование свойств веществ

Трудоемкость в зачетных единицах:	4	6 семестр
Часов (всего) по учебному плану:	144 ч	6 семестр
Лекции	28ч	6 семестр
Практические занятия	нет	6 семестр
Лабораторные работы	28	6 семестр
Самостоятельная работа	70 ч	6 семестр
Курсовые проекты (работы)	нет	6 семестр
Экзамены/зачеты	18 ч	6 семестр

<u>Цель дисциплины:</u> Изучение студентами существующих методов проведения экспериментальных исследований теплофизических свойств веществ в широком диапазоне температур и давлений, в различных агрегатных состояниях.

Основные разделы дисциплины:

Введение. Классификация теплофизических свойств веществ. Методы экспериментального исследования термических свойств (плотность твердых тел и жидкостей; коэффициент линейного расширения; сжимаемость газов). Методы исследования фазового равновесия (плавление, кипение, сублимация). Методы определения калорических свойств веществ (типы калориметров; определение энтальпии и теплоемкости твердых тел, жидкостей и газов). Методы исследования переносных свойств (Вязкость жидкостей и газов; теплопроводность твердых, жидких и газообразных сред). Методы исследования поверхностного натяжения и краевых углов смачивания жидкостей.

Теория теплофизических свойств веществ

Трудоемкость в зачетных единицах:	9	7,8 семестр
Часов (всего) по учебному плану:	324ч	7,8 семестр
Лекции	60ч	7,8 семестр
Практические занятия	60ч	7,8 семестр
Лабораторные работы	нет	7,8 семестр
Самостоятельная работа	132ч	7,8 семестр
Курсовые проекты (работы)	нет	7,8 семестр
Экзамены/зачеты	72ч	7,8 семестр

<u>Цель дисциплины</u> состоит в изучении методов расчета теплофизических свойств веществ на основе термодинамики, статистической физики и физической кинетики с использованием данных о макроскопическом поведении и микроскопической структуре вещества, приобретении ясного представления о теплофизических свойствах различных систем — как чистых веществ, так и смесей, в том числе реагирующих, в широком диапазоне температур и давлений, изучении физических механизмов, лежащих в основе различных аспектов теплового поведения веществ, обучении термодинамическим и молекулярно-кинетическим методам теоретического исследования.

Основные разделы дисциплины:

- 1. Введение. Термодинамический метод теории теплофизических свойств.
- 2. Метод статистической термодинамики. Идеальные газы.
- 3. Статистическая термодинамика смесей идеальных газов
- 4. Термодинамические свойства химически реагирующих систем.
- 5. Силы межмолекулярного взаимодействия.
- 6. Термодинамические свойства реальных веществ
- 7. Термодинамические свойства реальных смесей.
- 8. Процессы переноса в газах.

Численное решение задач теплофизики

Трудоемкость в зачетных единицах:	9	7,8 семестр
Часов (всего) по учебному плану:	324ч	7,8 семестр
Лекции	32ч	7,8 семестр
Практические занятия	46ч	7,8 семестр
Лабораторные работы	28 ч	7,8 семестр
Самостоятельная работа	164ч	7,8 семестр
Курсовые проекты (работы)	нет	7,8 семестр
Экзамены/зачеты	54ч	7,8 семестр

<u>Цель дисциплины:</u> Изучение теоретических основ численных методов молекулярной динамики и численного моделирования процессов, описываемых обобщенным уравнением переноса и приобретении навыков самостоятельного решения теплофизических задач с помощью компьютера.

Основные разделы дисциплины:

Численные методы решения задач, описываемых обобщенным уравнением диффузии. Численные методы решения задач, описываемых обобщенным уравнением конвективнодиффузионного переноса. Введение в вычислительные методы молекулярной динамики. Метод Монте-Карло.

Численное решение задач о нестационарной теплопроводности в твердых телах. Расчет теплообмена в каналах на начальном участке и при стабилизированном ламинарном течении жидкости. Численное моделирование динамики систем многих частиц. Применение метода Монте-Карло для моделирования макроскопических равновесных систем.

Экспериментальное исследование тепломассообмена

Трудоемкость в зачетных единицах:	5	7 семестр
Часов (всего) по учебному плану:	180ч	7 семестр
Лекции	32ч	7 семестр
Практические занятия	нет	7 семестр
Лабораторные работы	32 ч	7 семестр
Самостоятельная работа	80 ч	7 семестр
Курсовые проекты (работы)	нет	7 семестр
Экзамены/зачеты	36 ч	7 семестр

<u>Цель дисциплины</u>:Изучение методов экспериментального исследования гидродинамики, конвективного тепло- и массообмена и теплообмена при фазовых превращениях и освоение техники измерения коэффициентов гидравлического сопротивления, коэффициентов теплоотдачи и массоотдачи, а также полей давления, скорости, температуры и концентрации в потоках жидкости и газа.

Основные разделы дисциплины:

физическое моделирование процессов гидродинамики, теплообмена и массообмена;

схемы экспериментальных установок;

методы определения коэффициентов теплоотдачи;

измерение коэффициентов гидравлического сопротивления;

методы измерения полей давления, скорости, температуры и концентрации.

Основы энергетики

Трудоемкость в зачетных единицах:	3	7 семестр
Часов (всего) по учебному плану:	108 ч	7 семестр
Лекции	16 ч	7 семестр
Практические занятия	16 ч	7 семестр
Лабораторные работы	нет	7 семестр
Самостоятельная работа	58 ч	7 семестр
Курсовые проекты (работы)	нет	7 семестр
Экзамены/зачеты	18 ч	7 семестр

<u>Цель дисциплины:</u>Изучение современных технологий производства энергии с помощью энергетических установок, электростанций и комплексов на базе невозобновляемых и возобновляемых источников энергии, приобретение навыков расчета процессов производства электроэнергии на тепловых и атомных электрических станциях.

Основные разделы дисциплины:

Общая характеристика мирового энергопотребления. Современные технологии производства электроэнергии. Перспективы и проблемы развития энергетики.

Теплообмен излучением

Трудоемкость в зачетных единицах:	4	8 семестр
Часов (всего) по учебному плану:	144ч	8 семестр
Лекции	28 ч	8 семестр
Практические занятия	14 ч	8 семестр
Лабораторные работы	нет	8 семестр
Самостоятельная работа	66	8 семестр
Курсовые проекты (работы)	нет	8 семестр
Экзамены/зачеты	36 ч	8 семестр

<u>Цель дисциплины:</u>Изучение физических закономерностей испускания, распространения и поглощения теплового излучения, а также получение практических навыков расчета теплообмена излучением в различных инженерных системах.

Основные разделы дисциплины:

основные термины и определения; термодинамика теплового излучения; основные законы теплового излучения; угловые коэффициенты; теплообмен излучением в системе черных и серых поверхностей; излучательные свойства реальных тел; теоретические основы пирометрии; формула Планка; уравнение распространения излучения в недиатермических средах; специальные вопросы теплообмена излучением.

Новые информационно-измерительные системы и технологии в теплофизике

Трудоемкость в зачетных единицах:	3	8 семестр
Часов (всего) по учебному плану:	108ч	8 семестр
Лекции	14ч	8 семестр
Практические занятия	нет	8 семестр
Лабораторные работы	28 ч	8 семестр
Самостоятельная работа	48 ч	8 семестр
Курсовые проекты (работы)	нет	8 семестр
Экзамены/зачеты	18	8 семестр

<u>Цель дисциплины:</u>изучение новых информационно-измерительных систем и технологий для создания автоматизированных экспериментальных комплексов.

Основные разделы дисциплины:

- 1. Введение. Термины и определения
- 2. Контроллеры автоматизированных систем
- 3. Программное обеспечение автоматизированных систем
- 4. Нижний уровень автоматизированной системы (датчики, исполнительные органы)
- 5. Измерительно-управляющая аппаратура автоматизированных систем
- 6. Основы системной интеграции и инженерного менеджмента, инновации

Социология

Трудоемкость в зачетных единицах:	2	3 семестр
Часов (всего) по учебному плану:	72 ч	3 семестр
Лекции	16 ч	3 семестр
Практические занятия	16 ч	3 семестр
Лабораторные работы	0 ч	3 семестр
Самостоятельная работа	22 ч	3 семестр
Курсовые проекты (работы)	0 ч	3 семестр
Экзамены/зачеты	18 ч	3 семестр

<u>Цель дисциплины:</u> формирование целостного представления об обществе на основе изучения теоретических положений социологии и анализа актуальных социальных явлений и процессов

Основные разделы дисциплины. Возникновение социологии как науки в X1X столетии. Классический период развития социологии и основные социологические теории. Современная зарубежная социология. Социология в России. Предметное поле современной социологической науки и ее функции. Социологические парадигмы Прикладная социологического знания. социология и методы социологического исследования. Основные отрасли социологического знания. Основные концепции общества в социологии. Общество как социокультурная система. Основные признаки общества. Структура общества. Основные подсистемы общества. Эволюционные типы обществ. Общество как совокупность социальных общностей и социальных групп. Групповая динамика. Социальное неравенство и социальная стратификация. Факторы, определяющие социальные изменения. Социальный прогресс и регресс. Институциональная организация общества. Понятие «социальный институт». Институциональная среда современного российского общества. Понятие «социальная организация». Типы социальных организаций. Социальное неравенство. Социологический подход к личности. Личностная и социальная идентификация. Определение и структура личности. Зависимость личности от общества и автономия личности. Социализация личности: формы, этапы, агенты. социологические теории социализации личности. Факторы, влияющие на формирование Социальный контроль. Теория социальной аномии. Социальные нормы и санкции. Девиантное и деликвентное поведение и его формы.

Политология

Трудоемкость в зачетных единицах:	2	3 семестр
Часов (всего) по учебному плану:	72 ч	3 семестр
Лекции	16 ч	3 семестр
Практические занятия	16 ч	3 семестр
Лабораторные работы	0 ч	3 семестр
Самостоятельная работа	22 ч	3 семестр
Курсовые проекты (работы)	0 ч	3 семестр
Экзамены/зачеты	18 ч	3 семестр

<u> Цель дисциплины:</u> формирование способности ориентироваться в современной внутренней и внешней политике.

Основные разделы дисциплины.

Обыденные и научные трактовки политики. Политическая наука и политическая пропаганда. Предмет политической науки в системе социально-экономических и гуманитарных знаний. Методы и функции политологии.

Основные элементы политической системы общества. Государство как политический институт. Соотношение государства с гражданским обществом, проблема демократии. Форма правления и политический режим. Политические интересы и политические отношения. Субъекты политических отношений. Виды политических отношений. Политическая власть, ее сущность и условия ее возникновения. Субъект и объект власти. Основные институциональные структуры власти, политический строй. Способы осуществления власти и проблемы ее распределения. Проблема легитимности власти. Политическая власть и политическое влияние. Харизма и политическая компетентность. Специфика, ресурсы и источники политической власти. Политические организации. Формы динамики политических систем. Политическое насилие в истории общества.

Политическая система России. Сравнительный анализ политических систем. Исторические формы Российской государственности. Политический строй современной России и его конституционные основы. Основные политические партии. Избирательное законодательство и выборы. Политические элиты в современной России Группы влияния и механизмы реализации их интересов. Положение религий в современной России и формы их взаимодействия с государственной властью.

Глобализация и архитектоника современного мира. Биполярная, однополярная и многополярная модели мирового устройства. Цивилизационно-политические различия: Запад и Восток, Север и Юг. «Восточные» и «западные» политические режимы. Демократия и ее исторические типы. Современные концепции демократии. Классификация современных демократий. Международные организации и Россия.

Основные понятия геополитики. Геополитическое положение современной России. Противники и партнеры, основные задачи и проблемы российской геополитики.

Сущность политической культуры и ее место в жизни общества. Современные трактовки политической культуры. Типы политических культур. «Западная» и «Восточная» политические культуры. Политические субкультуры и контркультуры. Политическая культура и политические коммуникации, влияние СМИ на политические процессы. Политические идеологии и их анализ.

Мировые цивилизации и мировые культуры

Трудоемкость в зачетных единицах:	2	3 семестр
Часов (всего) по учебному плану:	72 ч	3 семестр
Лекции	16 ч	3 семестр
Практические занятия	16 ч	3 семестр
Лабораторные работы	0 ч	3 семестр
Самостоятельная работа	22 ч	3 семестр
Курсовые проекты (работы)	0 ч	3 семестр
Экзамены/зачеты	18 ч	3 семестр

<u> Цель дисциплины:</u> изучение основных принципов функционирования и закономерностей мирового цивилизационного и культурного опыта развития человечества.

Основные разделы дисциплины: Понятие цивилизации, ее сущность и основные типы. Историография изучения культурно-цивилизационного подхода В осмыслении исторического процесса. Цивилизация и культура. Мировые и локальные цивилизации, динамика их взаимодействия. Суперцивилизации «Восток» и «Запад»: социокультурная характеристика. Первобытный период в истории человечества. Понятие античности. Пространственные и временные границы античного мира, его природно-географические условия. Культурные достижения античности. Византийская цивилизация. Византийское культурное наследие и его значение для развития российской и мировой культуры. Цивилизация средневекового Запада. Определяющие черты средневековой культуры. Христианство как духовная основа западной цивилизации. Ренессанс и Реформация -Прединдустриальная духовные предтечи Нового времени. цивилизация. Просвещения и великие просветители. Особенности генезиса цивилизаций Востока. Роль религии в развитии восточных цивилизаций. Европейская экспансия и последствия колониальных захватов в процессе развития цивилизаций Востока. Типичные черты и особенности индустриальной цивилизации Запада и Востока. Научно-технический прогресс XIX-XX вв. Духовная и материальная культура индустриальной эпохи. Теоретические (информационном) представления о постиндустриальном обществе. Глобальные противоречия современности и потенциальные возможности их разрешения. Типичные черты информационной культурной среды. Понятие российской цивилизации. Духовность как основа культурного развития российской цивилизации. Место и роль России в межцивилизационном диалоге XXI в.

Элективные дисциплины о физической культуре и спорту

Трудоемкость в зачетных единицах:	0	1-6 семестры
Часов (всего) по учебному плану:	328 ч	1-6 семестры
Лекции	0 ч	1-6 семестры
Практические занятия	32+48+64+64+64+56 ч	1-6 семестры
Лабораторные работы	0 ч	1-6 семестры
Самостоятельная работа	0 ч	1-6 семестры
Курсовые проекты (работы)	0 ч	1-6 семестры
Экзамены/зачеты	0 ч	1-6 семестры

<u>Цель дисциплины:</u> гармоничное развитие человека, формирование физически и духовно крепкого, социально-активного, высоконравственного поколения студенческой молодежи, гармоничное сочетание физического и духовного воспитания, укрепление здоровья студентов, внедрение здорового образа жизни — не только как основы, но и как нормы жизни у будущих высококвалифицированных специалистов-энергетиков, формирование активной гражданской позиции.

Основные разделы дисциплины:

-теоретический раздел дисциплины (модуля)

«Физическая культура в общекультурной и профессиональной подготовке студентов МЭИ» «Образ жизни и его отражение в профессиональной деятельности»

-практический раздел дисциплины (модуля)

Система практических умений и навыков, обеспечивающих сохранение и укрепление здоровья, психическое благополучие, развитие и совершенствование психофизических способностей, качеств и свойств личности, самоопределение в физической культуре.

Обща и профессионально-прикладная физическая подготовленность, определяющая психофизическую готовность студента к будущей профессии.